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Divergent Fields, Charge, and Capacitance
In FDTD Simulations

Christopher L. Wagner and John B. Schneidéember, IEEE

Abstract—Finite-difference time-domain (FDTD) grids are of- Ez
ten described as being divergence-free in a source-free region
of space. However, in the presence of a source, the continuity
equation states that charges may be deposited in the grid, while
Gauss’s law dictates that the fields must diverge from any
deposited charge. The FDTD method will accurately predict the
(diverging) fields associated with charges deposited by a source
embedded in the grid. However, the behavior of the charge differs
from that of charge in the physical world, unless the FDTD
implementation is explicitly modified to include charge dynamics. -
Indeed, the way in which charge behaves in an FDTD grid () (b)
naturally leads to the definition of grid capacitance. This grid ) . . o ) .
capacitance, though small, is an intrinsic property of the grid Fig. 1_. Yee grid showing location of implicit magnetic or electric charge.
and is independent of the way in which energy is introduced. (a) H: centered-unit-cell magnetic charge. (B) centered-unit-cell electric

—= By

harge.
To account for this grid capacitance, one should use a slightly charge
modified form of the lumped-element capacitor model currently
used. precision and, thus, the fields are not completely divergence
Index Terms—FDTD methods. free. However, the amount that fields diverge, representing a

failure of charge conservation, is near the numeric noise floor
of the simulation and is of little practical concern.
On the other hand, substantial field divergence can be (and,
T IS WELL established that the finite-difference timeindeed, should be) produced by certain sources embedded
domain (FDTD) method can accurately model a widg the computational domain. Current sources with a dc
range of wave propagation and scattering problems. There &@nponent can deposit persistent charges while current sources
however, significant differences between the behavior of a sygith no dc component can produce temporary charging. The
tem governed by finite-difference formulations of Maxwell'syeometry of the source, as well as the temporal form of the
equations and one governed by the complete formulation furce function, ultimately dictates the amount of charging.
continuum physics. In the “discretized world,” finite-diﬁerenc@pen-ended fi|amentary radiators can deposit Charge because
calculus needs to be used to compute quantities, and the current diverges at the ends. The charge is not represented
continuous forms are not directly applicable to data extractgg a separately stored quantity, but only by the divergence of
from the grid [1]. Another distinction between the discretizeg field.
FDTD world and the physical world is a by-product of the The relationship between the electric fieldl and charge
way in which the FDTD method is implemented. A typicaljensity p is given by Gauss’s law
FDTD simulation does not explicitly include charge dynamics
and, thus, has properties not expected from the physics. V- E=p. (1)
For example, in an FDTD simulation, positive and negative

charges can be deposited in free space and, though the figiisen the field diverges from a point, (1) states that the
associated with these charges are correct, the charges dodhgtge density is nonzero. The Yee space lattice staggers the
move and are, in a sense, infinitely massive. field components in space to allow the spatial derivatives

In free-space regions in the absence of a source, the FD{Pyaxwell's equations to be computed with second-order
method can be shown to be divergence free [2], althoughcyrate central differences. This arrangement of the field
the derivation of this property of the FDTD grid assumeggcior components also allows the divergence to be computed
infinite precision. In practice, FDTD simulations use finitgith central differences, thus preserving the second-order

accuracy of charge-density computations. The charge density
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FDTD. grid can.store charge, _it is na}tural tg defing a grid T T T T T T T T T T S 0 5 6000509
capacitance. This capacitance is considered in Section IIl. - pod ]

20 |
[I. SOURCES AND CHARGING i
In this section, the relationship between the currents, fields;, o
and charge is examined using finite-difference calculus. Ex-
amples are given that show how charge may exist in thg

FDTD grid even though there is no explicit storage location fak

charge. Indeed, the charge “exists” only insofar as diverging -1 -~ ;Zz'xfggd Y ]

fields exist. These diverging fields, which are required to | Normalized Source | ]

satisfy the continuity equation, may persist indefinitely and, -20 | ¢ BwededCharge

hence, remain in the computational domain even after all the [ S 1

radiated fields are gone. _ _ T T T T e m ae
The equations relevant to the discussion here are Maxwell’s Time [ns]

curl equations and the continuity equation
Fig. 2. Charge deposited at the ends of a dipole radiator versus time. The

oF charge is “measured” from the FDTD grid using the finite-difference form of
GOE =VxH-J () Gauss's law. The expected charge is computed from the time integral of the
oH current waveform. For reference, the current source waveform is shown and
Lo — _VYUxE—-M (3) is normalized to the peak expected charge. The actual peak current strength
ot is 1 A
dp
vV-J=-L. 4
5 4)

a single-element current source driven by a Gaussian pulse.
A continuity equation similar to (4) governs the nonphysiThe charge as a function of time at the two ends of a single-
cal magnetic currents and magnetic charges. Note dhgt element (Hertzian) current source is shown in Fig. 2. Results
function added to Ampere’s law (2) [or Faraday’s law (3)] isvere obtained using an 8% 81 x 81 cubic cell domain with
formally a current density’ (or magnetic current densit%f) a 1-m cell spacing. (Note that the results shown in Fig. 2 are
and thus produces charge in accordance with the continuitylependent of this dimension, provided the current density is
equation. The FDTD currents are spatially collocated with trszaled to the grid size, i.e., the amount of charging is the
corresponding field components and offset a half-step in timeame if the samd(¢) is used.) The current source was a
Thus, e.g., each component.bis collocated with the colinear single-element filament at grid coordinate (40, 40, 40) and a
component ofE, but is offset a half-step in time. Higdon third-order absorbing boundary condition (ABC) was
Consider a filamentary current source that consists of onsed to terminate the domain. Note that the measured FDTD
or more elements. In accordance with the continuity equatiasults correspond precisely to those predicted by the temporal
charge will exist at the ends of this source. The amount pitegral of the current. Thus, although the FDTD method is
charge at one end of the current source, i.e., the amountnot considered a dc analysis technique, it does, nevertheless,
charge enclosed within a surface surrounding the end of thperly predict the fields associated with the rearrangement
filament, is given by the volume and temporal integration @ff fixed (dc) charge.
(4)

A. Harmonic Sources

t t
—/ ﬂJ- ds| dt = / I(t) dt = Qene  (5) FDTD simulations sometimes employ “harmonic” sources.
il —eo However, since a source must be turned on at some time, it
_ ) is not truly harmonic. Consequently, the time integral of the
where(¢) is the total current entering the volume a@tu. ¢ rrent source function (i.e., the charge) can have a dc value.

is the enclosed charge. For an integrable source functigighecific example is a sinusoidal current, turned on-ato,
Q.uc Can be determined analytically using continuum Camu'”\ﬁ/hich will deposit charge into the domain
Alternatively, Q... can be determined in an FDTD simulation

by the discrete-calculus volume integration of Gauss'’s law [1]. t t
When the volume containing the charge is a single-cell cube / I(t) dt = / sin(t) dt =1—cos(t) =Q(t) (7)
with an edge lengthL, integration of (1) yields 0 0

. 2 . where unit frequency and amplitude are used for simplicity.
eoﬂE'ds_eoL D Bruce = Qene ©) The charge oscillates between zero and two, and has an
o average value of one. This average charge which, for example,
where E¢,.. is the total field on a face. might be deposited at the ends of a Hertzian radiator, will
To illustrate the deposition of charge and to confirm theroduce nonzero dc fields throughout unshielded portions of
correspondence between the “expected” charge given by the domain.
temporal integral of the current and the “measured” chargeCosine currents, turned on at= 0, do not analytically
obtained from the flux integral of the electric field, considedleposit nonzero average charge. However, the large turn-on

six faces
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Fig. 5. Domain geometry for electric/magnetic-charging example.
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Fig. 3. Normalized source current and charge at ends of radiator vers
time. The source is a sine wave turned ontat 0 and the frequency is
about 8.1 MHz. The charge at both ends of the radiator is computed fro
the divergence off. The charge has a nonzero average about which th
instantaneous charge oscillates.

Electric Field

Fig. 6. Magnitude ofE over a plane that includes the two sources. This
snapshot was taken after 100 time steps. The electric-current source is to the
left.

-500

B. Transient Pulse Sources

Since the FDTD method is a time-domain technique, it is
possible to compute the model response at several frequencies
in a single run by using a transient source. As was shown in
| Fig. 2, if a Hertzian radiator consisting of a single element
{ of electric current is driven by a pulse that has a nonzero dc
component, then charge will be deposited into the domain.
Here, the dc behavior of the fields in the vicinity of multiele-
ment radiators, driven either by electric or magnetic currents,
Fig. 4. Electric field at the radiator (between_the charges) versus time. Tllge considered.
same parameters are used as pertained to Fig. 3. Consider the domain depicted in Fig. 5 of size 26B1 x

81. This domain contains:adirected 20-element-long electric
discontinuity of the cosine source functiontat 0 contains current source centered at 40 40 x 40 and az-directed
significant high-frequency components, which will suffer larggmagnetic current source 20-elements long, centered atx120
numerical dispersion. In the analytic case, we have 40 x 40. Magnetic charges and currents, while nonphysical,
can be modeled in FDTD simulations as simply as electric
charges and currents. The current on both sources is given by
a Gaussian pulse. Early in the simulation, both of these sources
have associated radiated fields, i.e., time-varying electric and
magnetic fields that are coupled through Maxwell's equations.
The deposited charg@(t) oscillates betweer-1 and 1, with Figs. 6 and 7 show the magnitude Bfand H, respectively,
an average value of zero. measured over a plane that includes the source. A logarithmic

To demonstrate harmonic source charging, Fig. 3 sho@gyscale is used to depict the fields where the darkness of a
the charge at the ends of a Hertzian radiator driven withpixel is indicative of the field strength—the darker the pixel,
sinusoidal current that has a strength of 1 A and a perithie stronger the field. These figures show the radiated fields
of 64 time steps (about 8.1 MHz). Fig. 4 shows the electrit a time when they are still close to their respective sources.
field at the radiator (between the charges). The domain for tiigentually, the radiated fields are absorbed by the ABC, and
example is the same as that used for Fig. 2. The nonzero mealy the static fields due to the charges remain. As evidence
in the charge and the electric field is a direct consequenceabfthis, the electric-field magnitude is shown in Fig. 8 and
turning on the source d@t= 0. These offsets are distinct fromthe magnetic-field magnitude is shown in Fig. 9 at a time
true harmonic solutions, which would have a zero mean. when the radiated fields have exited the computational space.

Electric Field [ V/m]
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/ 1) dt = / cos(t) dt =sin(t) = Q(t).  (8)
0 0
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boundaries were terminated with a third-order Higdon ABC
applied to the tangentiak-field components.

on each other an electrical force of attraction. In free space,
these charges will move under the influence of this electrical
force. In an FDTD model without charge dynamics, positive
and negative charges in free space will not move. The charges
are subject to coulomb forces, but no motion occurs. Conse-
guently, since adjacent cells can store charge, it is natural to
Fig. 7. Magnitude ofH over a plane that includes the two sources. Thigiafine a capacitance between cells of the grid
snapshot was also taken after 100 time steps and is the dual of Fig. 6. . . . ’ .

The capacitance of adjacent cells in free space in the Yee
grid can be derived in the following manner. The standard
definition of capacitance is

C=Q/V 9)
’ where () is the stored charge and is the voltage between

’ [ll. GRID CAPACITANCE
In the physical world, a positive and negative charge exert

the charges. The charge stored in the grid can be found either
from the temporal integral of the current that deposited the
charge or from the finite-difference flux integral Bf(Gauss’s
law). By expressing the charge in terms of the flux integral,
an electric field appears in the numerator of (9), which can
be cancelled with the electric field that subsequently appears
Fig. 8. Magnitude of; recorded after 300 time steps. The radiated field hz}lg t;.??letljdegst)r:rl]r;/a[t)?):ntvxrllet?]eCf(I)LT(p;jlr?gC(teh(e:azut;(eIg;ec?)rrilbotzs d
left the domain and only the static fields (and charge) remain.

into two partsEr,ce = Eene + Faistant. The contribution to

the integral by the fields from “distant” sources (i.e., sources
external to the surrounding surface) is zero. The field from
the enclosed chargg,,. makes a nonzero contribution to the
flux integral provided the total enclosed charge is nonzero.

. Consider a cubic-cell Gaussian surface that encloses a charge
Q. The relationship between the charge and field on the faces
‘ of the cell surrounding the charge is from (6)
Q = 60L2 Z (Eenc + Edistant) = 660L2Eenc (10)
six faces

where L is the length of one side of the cubic cell. The
expression on the right-hand side is a consequence of sym-
metry, which dictates thak.,,. is the same over all six faces

of a single-cell cube and aF ;. NOt contributing to the
(The data in Figs. 6 and 8 have been normalized to the samgral. The difference in potential between two adjacent cells
value so that these figures can be compared qualitatively. Tdentaining charges of equal magnitude and opposite sign is

Fig. 9. Magnitude ofH recorded after 300 time steps.

data in Figs. 7 and 9 have been similarly normalized.) The pos Q
fields in Figs. 8 and 9 are static and purely divergent from V= _/ E-dl=2LE,,.. (11)
the implied electric or magnetic charge at the ends of each neg Q

source. Fig. 8 clearly shows that the electric-current sourt@e factor of two is a consequence of the opposite charges
has deposited electric charge in the computational domain asdubling the total electric field over the face common to both
hence, perturbs the electric field. The perturbation is, of coursells. Using (10) and (11) in (9), the capacitance between
strongest near the deposited charge. On the other hand, ddfcent nodes in the FDTD grid is found to be

magnetic source does not deposit electric charge and, hence,
does not affect the dc electric fields. Nevertheless, the magnetic
source does, as shown in Fig. 9, deposit magnetic charggus, for example, the grid capacitance between adjacent
and does perturb the dc magnetic field. In these simulatiopgdes of a 1-m cubic unit cell will be about 26.6 pF.

the Gaussian current pulse had a half-wid#t?) of eight To illustrate the effect of this grid capacitance and to verify
time steps At ~ 1.9 x 1072 s) and a peak of 1 A. The (12), we discharge deposited charge through a conductance
peak magnetic-current strength was 377 ¥/nd the domain introduced into the grid. The rate of discharge is easily

Cgrid = 360L. (12)
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Fig. 10. Charge versus time when a conductivity is present. The same &tg. 11. Potential versus time when a conductivity is present. In one sim-
main and source are used as in Fig. 2. The conductivity4s2 x 10~* S/m  ulation, labeled “Grid,” no additional capacitance is introduced so that only
which is equivalent to 5 ®. The time constant which characterizes theghe inherent grid capacitance is present. In the other, labeled “Lumped,” a
discharge is 133 ns. lumped-element capacitor is introduced which has a capacitance equal to that
of the inherent grid capacitance. Since inherent grid capacitance acts in parallel
. . with the lumped-element capacitance, the time constant doubles. The plot
measured and can be used to obtain the associated ti&ys the potential after the sources have been turned off. The strengths of

constant. From this time constant and the known resistan&@, source functions were chosen so that curves were approximately equal
one can obtain the capacitance. Charge deposited into the m;zedsggrfoesfa"cﬁgté“r;‘é?p‘r’gta(zgﬁ Z?fhgopfof{iCt on the time constants,
will discharge through conductance with a time constant

However, since this effective permittivity does not account for
the inherent grid capacitance, the total capacitance at the node
where Rj.,q IS the resistance associated with the conductivityill be larger than desired by the amount given by (12). When
at the grid location. Discharging of deposited charge is showsing (13), the total capacitance at that node is

in Fig. 10. The grid spacing is 1 m with a load resistance of

5 ng[Z] so the gxpecltjed tir?1e constant, using the capacitancgtump + Cerid = L{cer = €0) + 3eoLe = Llcen + 2€0). (15)

of (12), is 133 ns. The measured time constant which chatthough one may have had the goal of introducing a capaci-
acterizes the decay shown in Fig. 10 is precisely this amoughce ofCh,,,, to the model, the total capacitance at that node
and, hence, verifies the capacitance predicted by (12). will be Cluymp + Cria-

We have only considered the capacity to store electric Fortunately, one can compensate for the inherent grid ca-
charge, but a similar (dual) effect exists for storage of magnefigcitance by subtracting the grid capacitance from the lumped
charge. While it may be of theoretical or pedagogical intereghpacitance in the calculation of the effective permittivity.
to produce magnetic charge in a simulation, magnetic charggys, to model a total capacitan@,,, at a given node,

is not physical. Simulations which deposit magnetic charggstead of (14), the effective permittivity should be
(static or transient) are not modeling real-world electromag-
netic problems. Nevertheless, magnetic sources that do not ‘et = 0 + (Crump = Cgria) /L = Crump/L = 2¢0 (16)

deposit magnetic charge, such as loops, may correspondyfQere a prime has been added to distinguish this modified ef-
physical problems if the source is equivalent to an electrigctive permittivity from the original. Alternatively, returning
source. _ . . to the notation of [3], a modified form of the coefficient of the
When implementing lumped-element capacitors in an FDT&yr| equation can be used to model a lumped-element capacitor
grid, the update equation at the location of the capacitgf . provided one explicitly accounts for (i.e., subtracts) the

is modified to include the capacitive effects [3]. Previougqgitional grid capacitance. The correct coefficient is
formulations of lumped-elements have neglected the inherent At/ At/
€0 _ €0

grid capacitance. As described in [3], a lumped capacitor in a .
cubic-cell grid can be realized by changing the coefficients of 1 + (Clump = Cgria)/(e0L) =2+ Crump/(c0L)

T = Cgrid Rioad

17)

the curl of the magnetic field. The new coefficient is
At/éo
1+ Clump/(COL)

where Cr.mp is the capacitance of the lumped element. Co
paring this to the usual coefficient @¢/¢,, one recognizes

(13)

that the capacitor is realized, in essence, by using an eﬁect\il\vl

permittivity e.¢ at a node. Equating\t/e.s with (13) and
solving for e.¢ yields

€off = €0 + Clump/L-

Lumped capacitors with less than the grid capacitance (i.e.,
Chump < 3€oL) cannot be implemented, as this would require
reducing the permittivity to belowy. If smaller capacitors are
required, the only option is to reduce the grid size so that the

rTE;‘rid capacitance is less than the desired lumped capacitance.

A capacitor with a parallel-load resistor should discharge
fth a time constant oRC. In the FDTD grid, the total

capacitance at a node is the sum of the lumped element and the

inherent grid capacitance (15). To illustrate this point, Fig. 11

(14) shows the potential, measured between charge locations, as a
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function of time for two simulations. (The potential is indica- [2] A. Taflove, Computational Electrodynamics: The Finite-Difference
tive of_ the amount. of _charge present.) In the first S|mulat|on[r31]O ,\T/I'mg”i?rm; N/I.ftf%gﬁoygrv;gg%.MBgr?;ng%qD?%usﬁ?édl;%% of digil
deposited charge is discharged through a conductance and NO signaj propagation in 3-D circuits with passive and active loatiEEE
lumped-element capactior is added, i.e., the only capacitance Trans. Microwave Theory Teghvol. 42, pp. 1514-1523, Aug. 1994.
present is the inherent grid capacitance. In the second, a

lumped-element capacitor with a capacitance equal to the

inherent grid capacitance is introduced in accordance with
the method described in [3]. Since the lumped element a
inherent grid capacitance are equal, the addition of the lump
element doubles the time constant. Viewed another way, if o
were to ignore the inherent grid capacitance, the time consti
would be incorrect by a factor of two.
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