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Divergent Fields, Charge, and Capacitance
in FDTD Simulations

Christopher L. Wagner and John B. Schneider,Member, IEEE

Abstract—Finite-difference time-domain (FDTD) grids are of-
ten described as being divergence-free in a source-free region
of space. However, in the presence of a source, the continuity
equation states that charges may be deposited in the grid, while
Gauss’s law dictates that the fields must diverge from any
deposited charge. The FDTD method will accurately predict the
(diverging) fields associated with charges deposited by a source
embedded in the grid. However, the behavior of the charge differs
from that of charge in the physical world, unless the FDTD
implementation is explicitly modified to include charge dynamics.
Indeed, the way in which charge behaves in an FDTD grid
naturally leads to the definition of grid capacitance. This grid
capacitance, though small, is an intrinsic property of the grid
and is independent of the way in which energy is introduced.
To account for this grid capacitance, one should use a slightly
modified form of the lumped-element capacitor model currently
used.

Index Terms—FDTD methods.

I. INTRODUCTION

I T IS WELL established that the finite-difference time-
domain (FDTD) method can accurately model a wide

range of wave propagation and scattering problems. There are,
however, significant differences between the behavior of a sys-
tem governed by finite-difference formulations of Maxwell’s
equations and one governed by the complete formulation of
continuum physics. In the “discretized world,” finite-difference
calculus needs to be used to compute quantities, and the
continuous forms are not directly applicable to data extracted
from the grid [1]. Another distinction between the discretized
FDTD world and the physical world is a by-product of the
way in which the FDTD method is implemented. A typical
FDTD simulation does not explicitly include charge dynamics
and, thus, has properties not expected from the physics.
For example, in an FDTD simulation, positive and negative
charges can be deposited in free space and, though the fields
associated with these charges are correct, the charges do not
move and are, in a sense, infinitely massive.

In free-space regions in the absence of a source, the FDTD
method can be shown to be divergence free [2], although
the derivation of this property of the FDTD grid assumes
infinite precision. In practice, FDTD simulations use finite
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Fig. 1. Yee grid showing location of implicit magnetic or electric charge.
(a) HHH: centered-unit-cell magnetic charge. (b)EEE: centered-unit-cell electric
charge.

precision and, thus, the fields are not completely divergence
free. However, the amount that fields diverge, representing a
failure of charge conservation, is near the numeric noise floor
of the simulation and is of little practical concern.

On the other hand, substantial field divergence can be (and,
indeed, should be) produced by certain sources embedded
in the computational domain. Current sources with a dc
component can deposit persistent charges while current sources
with no dc component can produce temporary charging. The
geometry of the source, as well as the temporal form of the
source function, ultimately dictates the amount of charging.
Open-ended filamentary radiators can deposit charge because
the current diverges at the ends. The charge is not represented
by a separately stored quantity, but only by the divergence of
a field.

The relationship between the electric field and charge
density is given by Gauss’s law

(1)

When the field diverges from a point, (1) states that the
charge density is nonzero. The Yee space lattice staggers the
field components in space to allow the spatial derivatives
in Maxwell’s equations to be computed with second-order
accurate central differences. This arrangement of the field
vector components also allows the divergence to be computed
with central differences, thus preserving the second-order
accuracy of charge-density computations. The charge density
(field divergence) is, therefore, defined between the field
vectors. The geometry of Yee-grid cells with implicit charge
locations is shown in Fig. 1.

In the following section, the deposition of charge in an
FDTD grid and the associated fields are examined. Both
“harmonic” and transient sources are considered. Since the
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FDTD grid can store charge, it is natural to define a grid
capacitance. This capacitance is considered in Section III.

II. SOURCES AND CHARGING

In this section, the relationship between the currents, fields,
and charge is examined using finite-difference calculus. Ex-
amples are given that show how charge may exist in the
FDTD grid even though there is no explicit storage location for
charge. Indeed, the charge “exists” only insofar as diverging
fields exist. These diverging fields, which are required to
satisfy the continuity equation, may persist indefinitely and,
hence, remain in the computational domain even after all the
radiated fields are gone.

The equations relevant to the discussion here are Maxwell’s
curl equations and the continuity equation

(2)

(3)

(4)

A continuity equation similar to (4) governs the nonphysi-
cal magnetic currents and magnetic charges. Note thatany
function added to Ampere’s law (2) [or Faraday’s law (3)] is
formally a current density (or magnetic current density )
and thus produces charge in accordance with the continuity
equation. The FDTD currents are spatially collocated with the
corresponding field components and offset a half-step in time.
Thus, e.g., each component ofis collocated with the colinear
component of , but is offset a half-step in time.

Consider a filamentary current source that consists of one
or more elements. In accordance with the continuity equation,
charge will exist at the ends of this source. The amount of
charge at one end of the current source, i.e., the amount of
charge enclosed within a surface surrounding the end of the
filament, is given by the volume and temporal integration of
(4)

(5)

where is the total current entering the volume and
is the enclosed charge. For an integrable source function,

can be determined analytically using continuum calculus.
Alternatively, can be determined in an FDTD simulation
by the discrete-calculus volume integration of Gauss’s law [1].
When the volume containing the charge is a single-cell cube
with an edge length , integration of (1) yields

(6)

where is the total field on a face.
To illustrate the deposition of charge and to confirm the

correspondence between the “expected” charge given by the
temporal integral of the current and the “measured” charge
obtained from the flux integral of the electric field, consider

Fig. 2. Charge deposited at the ends of a dipole radiator versus time. The
charge is “measured” from the FDTD grid using the finite-difference form of
Gauss’s law. The expected charge is computed from the time integral of the
current waveform. For reference, the current source waveform is shown and
is normalized to the peak expected charge. The actual peak current strength
is 1 A.

a single-element current source driven by a Gaussian pulse.
The charge as a function of time at the two ends of a single-
element (Hertzian) current source is shown in Fig. 2. Results
were obtained using an 81 81 81 cubic cell domain with
a 1-m cell spacing. (Note that the results shown in Fig. 2 are
independent of this dimension, provided the current density is
scaled to the grid size, i.e., the amount of charging is the
same if the same is used.) The current source was a
single-element filament at grid coordinate (40, 40, 40) and a
Higdon third-order absorbing boundary condition (ABC) was
used to terminate the domain. Note that the measured FDTD
results correspond precisely to those predicted by the temporal
integral of the current. Thus, although the FDTD method is
not considered a dc analysis technique, it does, nevertheless,
properly predict the fields associated with the rearrangement
of fixed (dc) charge.

A. Harmonic Sources

FDTD simulations sometimes employ “harmonic” sources.
However, since a source must be turned on at some time, it
is not truly harmonic. Consequently, the time integral of the
current source function (i.e., the charge) can have a dc value.
A specific example is a sinusoidal current, turned on at ,
which will deposit charge into the domain

(7)

where unit frequency and amplitude are used for simplicity.
The charge oscillates between zero and two, and has an
average value of one. This average charge which, for example,
might be deposited at the ends of a Hertzian radiator, will
produce nonzero dc fields throughout unshielded portions of
the domain.

Cosine currents, turned on at , do not analytically
deposit nonzero average charge. However, the large turn-on
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Fig. 3. Normalized source current and charge at ends of radiator versus
time. The source is a sine wave turned on att = 0 and the frequency is
about 8.1 MHz. The charge at both ends of the radiator is computed from
the divergence ofEEE. The charge has a nonzero average about which the
instantaneous charge oscillates.

Fig. 4. Electric field at the radiator (between the charges) versus time. The
same parameters are used as pertained to Fig. 3.

discontinuity of the cosine source function at contains
significant high-frequency components, which will suffer large
numerical dispersion. In the analytic case, we have

(8)

The deposited charge oscillates between 1 and 1, with
an average value of zero.

To demonstrate harmonic source charging, Fig. 3 shows
the charge at the ends of a Hertzian radiator driven with a
sinusoidal current that has a strength of 1 A and a period
of 64 time steps (about 8.1 MHz). Fig. 4 shows the electric
field at the radiator (between the charges). The domain for this
example is the same as that used for Fig. 2. The nonzero mean
in the charge and the electric field is a direct consequence of
turning on the source at . These offsets are distinct from
true harmonic solutions, which would have a zero mean.

Fig. 5. Domain geometry for electric/magnetic-charging example.

Fig. 6. Magnitude ofEEE over a plane that includes the two sources. This
snapshot was taken after 100 time steps. The electric-current source is to the
left.

B. Transient Pulse Sources

Since the FDTD method is a time-domain technique, it is
possible to compute the model response at several frequencies
in a single run by using a transient source. As was shown in
Fig. 2, if a Hertzian radiator consisting of a single element
of electric current is driven by a pulse that has a nonzero dc
component, then charge will be deposited into the domain.
Here, the dc behavior of the fields in the vicinity of multiele-
ment radiators, driven either by electric or magnetic currents,
is considered.

Consider the domain depicted in Fig. 5 of size 16181
81. This domain contains a-directed 20-element-long electric
current source centered at 40 40 40 and a -directed
magnetic current source 20-elements long, centered at 120
40 40. Magnetic charges and currents, while nonphysical,
can be modeled in FDTD simulations as simply as electric
charges and currents. The current on both sources is given by
a Gaussian pulse. Early in the simulation, both of these sources
have associated radiated fields, i.e., time-varying electric and
magnetic fields that are coupled through Maxwell’s equations.
Figs. 6 and 7 show the magnitude of and , respectively,
measured over a plane that includes the source. A logarithmic
grayscale is used to depict the fields where the darkness of a
pixel is indicative of the field strength—the darker the pixel,
the stronger the field. These figures show the radiated fields
at a time when they are still close to their respective sources.
Eventually, the radiated fields are absorbed by the ABC, and
only the static fields due to the charges remain. As evidence
of this, the electric-field magnitude is shown in Fig. 8 and
the magnetic-field magnitude is shown in Fig. 9 at a time
when the radiated fields have exited the computational space.
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Fig. 7. Magnitude ofHHH over a plane that includes the two sources. This
snapshot was also taken after 100 time steps and is the dual of Fig. 6.

Fig. 8. Magnitude ofEEE recorded after 300 time steps. The radiated field has
left the domain and only the static fields (and charge) remain.

Fig. 9. Magnitude ofHHH recorded after 300 time steps.

(The data in Figs. 6 and 8 have been normalized to the same
value so that these figures can be compared qualitatively. The
data in Figs. 7 and 9 have been similarly normalized.) The
fields in Figs. 8 and 9 are static and purely divergent from
the implied electric or magnetic charge at the ends of each
source. Fig. 8 clearly shows that the electric-current source
has deposited electric charge in the computational domain and,
hence, perturbs the electric field. The perturbation is, of course,
strongest near the deposited charge. On the other hand, the
magnetic source does not deposit electric charge and, hence,
does not affect the dc electric fields. Nevertheless, the magnetic
source does, as shown in Fig. 9, deposit magnetic charge
and does perturb the dc magnetic field. In these simulations,
the Gaussian current pulse had a half-width of eight
time steps ( s) and a peak of 1 A. The
peak magnetic-current strength was 377 V/mand the domain

boundaries were terminated with a third-order Higdon ABC
applied to the tangential -field components.

III. GRID CAPACITANCE

In the physical world, a positive and negative charge exert
on each other an electrical force of attraction. In free space,
these charges will move under the influence of this electrical
force. In an FDTD model without charge dynamics, positive
and negative charges in free space will not move. The charges
are subject to coulomb forces, but no motion occurs. Conse-
quently, since adjacent cells can store charge, it is natural to
define a capacitance between cells of the grid.

The capacitance of adjacent cells in free space in the Yee
grid can be derived in the following manner. The standard
definition of capacitance is

(9)

where is the stored charge and is the voltage between
the charges. The charge stored in the grid can be found either
from the temporal integral of the current that deposited the
charge or from the finite-difference flux integral of(Gauss’s
law). By expressing the charge in terms of the flux integral,
an electric field appears in the numerator of (9), which can
be cancelled with the electric field that subsequently appears
in the denominator. When computing the flux integral, the
total field at any point on the flux surface can be decomposed
into two parts . The contribution to
the integral by the fields from “distant” sources (i.e., sources
external to the surrounding surface) is zero. The field from
the enclosed charge makes a nonzero contribution to the
flux integral provided the total enclosed charge is nonzero.
Consider a cubic-cell Gaussian surface that encloses a charge

. The relationship between the charge and field on the faces
of the cell surrounding the charge is from (6)

(10)

where is the length of one side of the cubic cell. The
expression on the right-hand side is a consequence of sym-
metry, which dictates that is the same over all six faces
of a single-cell cube and of not contributing to the
integral. The difference in potential between two adjacent cells
containing charges of equal magnitude and opposite sign is

(11)

The factor of two is a consequence of the opposite charges
doubling the total electric field over the face common to both
cells. Using (10) and (11) in (9), the capacitance between
adjacent nodes in the FDTD grid is found to be

(12)

Thus, for example, the grid capacitance between adjacent
nodes of a 1-m cubic unit cell will be about 26.6 pF.

To illustrate the effect of this grid capacitance and to verify
(12), we discharge deposited charge through a conductance
introduced into the grid. The rate of discharge is easily
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Fig. 10. Charge versus time when a conductivity is present. The same do-
main and source are used as in Fig. 2. The conductivity is� = 2� 10�4 S/m
which is equivalent to 5 k
. The time constant which characterizes the
discharge is 133 ns.

measured and can be used to obtain the associated time
constant. From this time constant and the known resistance,
one can obtain the capacitance. Charge deposited into the grid
will discharge through conductance with a time constant

where is the resistance associated with the conductivity
at the grid location. Discharging of deposited charge is shown
in Fig. 10. The grid spacing is 1 m with a load resistance of
5 k [2] so the expected time constant, using the capacitance
of (12), is 133 ns. The measured time constant which char-
acterizes the decay shown in Fig. 10 is precisely this amount
and, hence, verifies the capacitance predicted by (12).

We have only considered the capacity to store electric
charge, but a similar (dual) effect exists for storage of magnetic
charge. While it may be of theoretical or pedagogical interest
to produce magnetic charge in a simulation, magnetic charge
is not physical. Simulations which deposit magnetic charge
(static or transient) are not modeling real-world electromag-
netic problems. Nevertheless, magnetic sources that do not
deposit magnetic charge, such as loops, may correspond to
physical problems if the source is equivalent to an electric
source.

When implementing lumped-element capacitors in an FDTD
grid, the update equation at the location of the capacitor
is modified to include the capacitive effects [3]. Previous
formulations of lumped-elements have neglected the inherent
grid capacitance. As described in [3], a lumped capacitor in a
cubic-cell grid can be realized by changing the coefficients of
the curl of the magnetic field. The new coefficient is

(13)

where is the capacitance of the lumped element. Com-
paring this to the usual coefficient of , one recognizes
that the capacitor is realized, in essence, by using an effective
permittivity at a node. Equating with (13) and
solving for yields

(14)

Fig. 11. Potential versus time when a conductivity is present. In one sim-
ulation, labeled “Grid,” no additional capacitance is introduced so that only
the inherent grid capacitance is present. In the other, labeled “Lumped,” a
lumped-element capacitor is introduced which has a capacitance equal to that
of the inherent grid capacitance. Since inherent grid capacitance acts in parallel
with the lumped-element capacitance, the time constant doubles. The plot
shows the potential after the sources have been turned off. The strengths of
the source functions were chosen so that curves were approximately equal
when the sources were turned off (this has no effect on the time constants,
but was done to facilitate interpretation of the plot).

However, since this effective permittivity does not account for
the inherent grid capacitance, the total capacitance at the node
will be larger than desired by the amount given by (12). When
using (13), the total capacitance at that node is

(15)

Although one may have had the goal of introducing a capaci-
tance of to the model, the total capacitance at that node
will be .

Fortunately, one can compensate for the inherent grid ca-
pacitance by subtracting the grid capacitance from the lumped
capacitance in the calculation of the effective permittivity.
Thus, to model a total capacitance at a given node,
instead of (14), the effective permittivity should be

(16)

where a prime has been added to distinguish this modified ef-
fective permittivity from the original. Alternatively, returning
to the notation of [3], a modified form of the coefficient of the
curl equation can be used to model a lumped-element capacitor

provided one explicitly accounts for (i.e., subtracts) the
additional grid capacitance. The correct coefficient is

(17)

Lumped capacitors with less than the grid capacitance (i.e.,
cannot be implemented, as this would require

reducing the permittivity to below . If smaller capacitors are
required, the only option is to reduce the grid size so that the
grid capacitance is less than the desired lumped capacitance.

A capacitor with a parallel-load resistor should discharge
with a time constant ofRC. In the FDTD grid, the total
capacitance at a node is the sum of the lumped element and the
inherent grid capacitance (15). To illustrate this point, Fig. 11
shows the potential, measured between charge locations, as a
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function of time for two simulations. (The potential is indica-
tive of the amount of charge present.) In the first simulation,
deposited charge is discharged through a conductance and no
lumped-element capactior is added, i.e., the only capacitance
present is the inherent grid capacitance. In the second, a
lumped-element capacitor with a capacitance equal to the
inherent grid capacitance is introduced in accordance with
the method described in [3]. Since the lumped element and
inherent grid capacitance are equal, the addition of the lumped
element doubles the time constant. Viewed another way, if one
were to ignore the inherent grid capacitance, the time constant
would be incorrect by a factor of two.

IV. CONCLUSIONS

Sources in the FDTD computational domain can deposit
charge which produce dc offsets in the fields. The charge is
evident by the divergence of the field. The field associated with
deposited (static) charge is accurately predicted by the FDTD
method in accordance with Gauss’s law. However, because
charge cannot move within the FDTD grid, there is an inherent
grid capacitance, which is a function of the grid spacing. One
can account for this grid capacitance when introducing lumped
elements to obtain the desired capacitance.
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